External loops at the ferredoxin-NADP(+) reductase protein-partner binding cavity contribute to substrates allocation.
نویسندگان
چکیده
Ferredoxin-NADP(+) reductase (FNR) is the structural prototype of a family of FAD-containing reductases that catalyze electron transfer between low potential proteins and NAD(P)(+)/H, and that display a two-domain arrangement with an open cavity at their interface. The inner part of this cavity accommodates the reacting atoms during catalysis. Loops at its edge are highly conserved among plastidic FNRs, suggesting that they might contribute to both flavin stabilization and competent disposition of substrates. Here we pay attention to two of these loops in Anabaena FNR. The first is a sheet-loop-sheet motif, loop102-114, that allocates the FAD adenosine. It was thought to determine the extended FAD conformation, and, indirectly, to modulate isoalloxazine electronic properties, partners binding, catalytic efficiency and even coenzyme specificity. The second, loop261-269, contains key residues for the allocation of partners and coenzyme, including two glutamates, Glu267 and Glu268, proposed as candidates to facilitate the key displacement of the C-terminal tyrosine (Tyr303) from its stacking against the isoalloxazine ring during the catalytic cycle. Our data indicate that the main function of loop102-114 is to provide the inter-domain cavity with flexibility to accommodate protein partners and to guide the coenzyme to the catalytic site, while the extended conformation of FAD must be induced by other protein determinants. Glu267 and Glu268 appear to assist the conformational changes that occur in the loop261-269 during productive coenzyme binding, but their contribution to Tyr303 displacement is minor than expected. Additionally, loop261-269 appears a determinant to ensure reversibility in photosynthetic FNRs.
منابع مشابه
Interaction between ferredoxin and ferredoxin nicotinamide adenine dinucleotide phosphate reductase in pyridine nucleotide photoreduction and some partial reactions. I. Inhibition of ferredoxin nicotinamide adenine dinucleotide phosphate reductase by ferredoxin.
Purified ferredoxin has been shown to inhibit reactions mediated by the flavoprotein ferredoxin-NADP reductase. Ferredoxin inhibits the transfer of electrons from NADPH to ferricyanide (diaphorase activity) to NAD (transhydrogenase) and the photoreduction of pyridine nucleotides during the Hill reaction. On the basis of the kinetics of inhibition, it is suggested that the flavoprotein has two b...
متن کاملHeparin inhibition of ferredoxin-NADP reductase in chloroplast thylakoid membranes.
Heparin, an anionic polysaccharide, inhibited the ferredoxin-catalyzed reduction of NADP in spinach chloroplast thylakoid membranes. Under the same conditions of assay, heparin did not interfere markedly with photoreduction of methyl viologen, anthraquinone sulfonate, or ferredoxin. A kinetic analysis of the heparin-induced interference with NADP photoreduction showed partial competitive inhibi...
متن کاملInteractions between spinach ferredoxin-nitrite reductase and its substrates. Evidence for the specificity of ferredoxin.
Reduced ferredoxin can serve as electron donor in the 6-electron reduction of nitrite to ammonia catalyzed by spinach nitrite reductase. We have examined interactions between nitrite reductase and its substrates, ferredoxin and nitrite, with emphasis upon protein-protein interactions between ferredoxin and nitrite reductase. Ferredoxin, of the proteins tested, is the most effective in retarding...
متن کاملMetabolic Interactions between Spinach Leaf Nitrite Reductase and Ferredoxin-NADP Reductase: Competition for Reduced Ferredoxin.
Steady state rates of NADP reduction decline upon commencement of nitrite reduction in reconstituted chloroplast preparations. Similarly, steady state rates of nitrite reduction are lower, but not zero, during concurrent NADP reduction. These results imply that competition for substrate occurs and suggest that nitrite reduction can successfully compete for reduced ferredoxin, even at high rates...
متن کاملInteraction of Ferredoxin-NADP Oxidoreductase with the Thylakoid Membrane.
The binding of ferredoxin-NADP reductase to spinach chloroplast membranes was studied by washing the membranes with different media. Release of the enzyme from the thylakoids was greater in 0.75 millimolar EDTA but was not complete inasmuch as 20% the activity remained membrane-bound after three washes.A Scatchard plot of binding experiments suggests the presence of one type of binding site and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochimica et biophysica acta
دوره 1837 2 شماره
صفحات -
تاریخ انتشار 2014